Worksheet 6

Name: \qquad Score: \qquad

1. Let W be the subspace spanned by the vectors. Find a basis for the orthogonal complement W^{\perp} of W.
(a)

$$
\left[\begin{array}{c}
-5 \\
-25 \\
-1 \\
24
\end{array}\right], \quad\left[\begin{array}{c}
4 \\
20 \\
1 \\
-19
\end{array}\right] .
$$

Solution:
Let A be the matrix with columns the above vectors:

$$
\left[\begin{array}{cc}
-5 & 4 \\
-25 & 20 \\
-1 & 1 \\
24 & -19
\end{array}\right]
$$

Reduced row echelon form (RREF) of A^{T} :

$$
\left[\begin{array}{cccc}
1 & 5 & 0 & -5 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Basis for $W^{\perp}=(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}$:

$$
\left[\begin{array}{c}
-5 \\
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
5 \\
0 \\
-1 \\
1
\end{array}\right] .
$$

(b)

$$
\left[\begin{array}{c}
-3 \\
-15 \\
-15 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
2 \\
10 \\
10 \\
1
\end{array}\right] .
$$

Solution:
Let A be the matrix with columns the above vectors:

$$
\left[\begin{array}{cc}
-3 & 2 \\
-15 & 10 \\
-15 & 10 \\
0 & 1
\end{array}\right]
$$

Reduced row echelon form (RREF) of A^{T} :

$$
\left[\begin{array}{llll}
1 & 5 & 5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Basis for $W^{\perp}=(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}$:

$$
\left[\begin{array}{c}
-5 \\
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-5 \\
0 \\
1 \\
0
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{c}
0 \\
4 \\
0 \\
16
\end{array}\right], \quad\left[\begin{array}{c}
4 \\
-5 \\
3 \\
2
\end{array}\right], \quad\left[\begin{array}{c}
-2 \\
-2 \\
2 \\
-12
\end{array}\right]
$$

Solution:
Let A be the matrix with columns the above vectors:

$$
\left[\begin{array}{ccc}
0 & 4 & -2 \\
4 & -5 & -2 \\
0 & 3 & 2 \\
16 & 2 & -12
\end{array}\right]
$$

Reduced row echelon form (RREF) of A^{T} :

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Basis for $W^{\perp}=(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}$:

$$
\left[\begin{array}{c}
-4 \\
-4 \\
-2 \\
1
\end{array}\right]
$$

2. Decide whether the linear system of equations $A \vec{x}=\vec{b}$ has a solution. If not, find a least squares solution.
(a)

$$
A=\left[\begin{array}{cc}
-3 & 1 \\
0 & 1 \\
0 & 2
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
-2 \\
-2 \\
3
\end{array}\right]
$$

Solution: The system $A \vec{x}=\vec{b}$ does not have solutions. The normal equations are:

$$
\begin{gathered}
A^{T} A=\left[\begin{array}{cc}
9 & -3 \\
-3 & 6
\end{array}\right] \\
A^{T} \vec{b}=\left[\begin{array}{l}
6 \\
2
\end{array}\right]
\end{gathered}
$$

The reduced row echelon form (RREF) of $A^{T} A \vec{x}=A^{T} \vec{b}$ is

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{cc}
2 & 1 \\
-4 & -3 \\
2 & 1
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
2 \\
-4 \\
-2
\end{array}\right]
$$

Solution: The system $A \vec{x}=\vec{b}$ does not have solutions. The normal equations are:

$$
\begin{gathered}
A^{T} A=\left[\begin{array}{ll}
24 & 16 \\
16 & 11
\end{array}\right] \\
A^{T} \vec{b}=\left[\begin{array}{l}
16 \\
12
\end{array}\right]
\end{gathered}
$$

The reduced row echelon form (RREF) of $A^{T} A \vec{x}=A^{T} \vec{b}$ is

$$
\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 4
\end{array}\right]
$$

(c)

$$
A=\left[\begin{array}{cc}
2 & 1 \\
-4 & -5 \\
-1 & -1 \\
-2 & 2
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
5 \\
3 \\
3 \\
-4
\end{array}\right]
$$

Solution: The system $A \vec{x}=\vec{b}$ does not have solutions. The normal equations are:

$$
\begin{aligned}
A^{T} A & =\left[\begin{array}{ll}
25 & 19 \\
19 & 31
\end{array}\right] \\
A^{T} \vec{b} & =\left[\begin{array}{c}
3 \\
-21
\end{array}\right]
\end{aligned}
$$

The reduced row echelon form (RREF) of $A^{T} A \vec{x}=A^{T} \vec{b}$ is

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right]
$$

